5 research outputs found

    A Closed-Loop Brain Stimulation Control System Design Based on Brain-Machine Interface for Epilepsy

    Get PDF
    In this study, a closed-loop brain stimulation control system scheme for epilepsy seizure abatement is designed by brain-machine interface (BMI) technique. In the controller design process, the practical parametric uncertainties involving cerebral blood flow, glucose metabolism, blood oxygen level dependence, and electromagnetic disturbances in signal control are considered. An appropriate transformation is introduced to express the system in regular form for design and analysis. Then, sufficient conditions are developed such that the sliding motion is asymptotically stable. Combining Caputo fractional order definition and neural network (NN), a finite time fractional order sliding mode (FFOSM) controller is designed to guarantee reachability of the sliding mode. The stability and reachability analysis of the closed-loop tracking control system gives the guideline of parameter selection, and simulation results based on comprehensive comparisons are carried out to demonstrate the effectiveness of proposed approach

    Fault Tolerant Controller Design for a Faulty UAV Using Fuzzy Modeling Approach

    No full text
    We address a fault tolerant control (FTC) issue about an unmanned aerial vehicle (UAV) under possible simultaneous actuator saturation and faults occurrence. Firstly, the Takagi-Sugeno fuzzy models representing nonlinear flight control systems (FCS) for an UAV with unknown disturbances and actuator saturation are established. Then, a normal H-infinity tracking controller is presented using an online estimator, which is introduced to weaken the saturation effect. Based on the normal tracking controller, we propose an adaptive fault tolerant tracking controller (FTTC) to solve actuator loss of effectiveness (LOE) fault problem. Compared with previous work, this approach developed in our research need not rely on any fault diagnosis unit and is easily applied in engineering. Finally, these results in simulation indicate the efficiency of our presented FTC scheme

    Terminal Sliding Mode Control Using Adaptive Fuzzy-Neural Observer

    Get PDF
    We propose a terminal sliding mode control (SMC) law based on adaptive fuzzy-neural observer for nonaffine nonlinear uncertain system. First, a novel nonaffine nonlinear approximation algorithm is proposed for observer and controller design. Then, an adaptive fuzzy-neural observer is introduced to identify the simplified model and resolve the problem of the unavailability of the state variables. Moreover, based on the information of the adaptive observer, the terminal SMC law is designed. The Lyapunov synthesis approach is used to guarantee a global uniform ultimate boundedness property of the state estimation error and the asymptotic output tracking of the closed-loop control systems in spite of unknown uncertainties/disturbances, as well as all the other signals in the closed-loop system. Finally, using the designed terminal sliding mode controller, the simulation results on the dynamic model demonstrate the effectiveness of the proposed new control techniques
    corecore